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SUMMARY

A major challenge to studying Fe-S cluster biosyn-
thesis in higher eukaryotes is the lack of simple tools
for imaging metallocluster binding to proteins. We
describe the first fluorescent approach for in vivo
detection of 2Fe2S clusters that is based upon the
complementation of Venus fluorescent protein frag-
ments via human glutaredoxin 2 (GRX2) coordination
of a 2Fe2S cluster. We show that Escherichia coli and
mammalian cells expressing Venus fragments fused
to GRX2 exhibit greater fluorescence than cells ex-
pressing fragments fused to a C37A mutant that
cannot coordinate a metallocluster. In addition, we
find that maximal fluorescence in the cytosol of
mammalian cells requires the iron-sulfur cluster
assembly proteins ISCU and NFS1. These findings
provide evidence that glutaredoxins can dimerize
within mammalian cells through coordination of a
2Fe2S cluster as observed with purified recombinant
proteins.
INTRODUCTION

Proteins containing iron-sulfur (Fe-S) clusters are essential for

cellular processes ranging from cytosolic regulation to mito-

chondrial metabolism and respiration to nuclear DNA repair

(Lill, 2009). The chemistry and structure of the most common

types of Fe-S centers, [2Fe2S] and [4Fe4S], have been exten-

sively characterized (Rees and Howard, 2003). In addition,

diseases have been identified that are caused by defects in

proteins that contain Fe-S clusters (Finsterer, 2008) as well as

those that synthesize Fe-S clusters, like Friedreich’s ataxia

(Campuzano et al., 1996), sideroblastic anemia (Camaschella

et al., 2007), and myopathy (Mochel et al., 2008). Despite the

widespread importance of metalloclusters for normal cellular

function and nuclear genome stability (Veatch et al., 2009), we

do not sufficiently understand the mechanisms by which Fe-S

clusters are synthesized and relayed in mammalian cells to

treat diseases caused by defects in their biosynthesis (Whitnall

et al., 2008).
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A major challenge in studying Fe-S cluster metabolism in

metazoans and developing therapies for diseases caused by

defects in metallocluster biosynthesis is the lack of simple

imaging tools for directly monitoring the metal binding state of

proteins within the individual subcellular compartments of living

cells. Existing methods for studying Fe-S clusters coordinated

by proteins are limited in their ability to screen for molecules

that affect metallocluster homeostasis within living cells. Möss-

bauer and electron paramagnetic resonance spectroscopy can

both detect Fe-S clusters in living cells (Djaman et al., 2004;

Yang et al., 2009), but these approaches require protein overex-

pression and cryogenic conditions. Radiotracer studies over-

come these limitations (Muhlenhoff et al., 2002). However, cell

lysis and protein manipulation are required prior to analysis, re-

stricting the throughput of this method (Pierik et al., 2009). With

many metal ions, these limitations have been overcome through

the development of synthetic fluorescent sensors, which can

image changes in the levels of metals bound to engineered

proteins (Dittmer et al., 2009) as well as their intracellular concen-

trations (Domaille et al., 2008). In contrast, fluorescent sensors

have not been created for imaging Fe-S metalloclusters bound

by proteins within the different subcellular compartments of

living cells.

Recently, we showed that fluorescence spectroscopy can

report on Fe-S cluster binding to purified recombinant human

GRX2 (Hoff et al., 2009), a glutathione-dependent oxidoreduc-

tase that dimerizes and is inactivated in vitro through 2Fe2S

coordination of an active site cysteine (Lillig et al., 2005). GRX2

retained the ability to coordinate a 2Fe2S cluster upon overex-

pression in Escherichia coli when it was fused at its N terminus

to different green fluorescent protein (GFP) homologs, and

2Fe2S cluster coordination coincided with fluorescence quench-

ing (Hoff et al., 2009). Although this study provided evidence that

GFP-GRX2 will be useful as a fluorescence reporter for in vitro

studies of iron-sulfur cluster assembly on GRX2 involving

complex mixtures that are not compatible with existing

approaches (Bonomi et al., 2008), the fluorescence changes

observed upon GRX2 dimerization are not sufficient to allow

for in vivo measurements of 2Fe2S-induced dimerization in the

different cell types and subcellular compartments where GRX2

has been observed (Lonn et al., 2008).

To develop an assay for direct visualization of Fe-S clusters

bound by GRX2 in vivo, we coupled the complementation of
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Figure 1. Strategy for Imaging GRX2 and 2Fe2S Binding

Venus fragment complementation is enhanced when GRX2 dimerizes through coordination of a 2Fe2S cluster. The dimeric structure of GRX2 is shown (Protein

Data Bank ID 2HT9) (Johansson et al., 2007).
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a split fluorescent protein to the synthesis of 2Fe2S clusters on

GRX2 (Figure 1). In this Fe-S cluster Fluorescence Assay

(FeSFA), nonfluorescent fragments of the yellow fluorescent

protein variant Venus (Hu and Kerppola, 2003) are fused to

human GRX2. The fluorescence magnitude of FeSFA is pre-

dicted to depend on the fraction of GRX2 that coordinates Fe-

S clusters, because apoGRX2 is monomeric and incapable of

efficiently bringing Venus fragments into close proximity for

chromophore maturation.

RESULTS

Design of a Fluorescence Assay for GRX2-Bound
Fe-S Clusters
A bimolecular fluorescence approach (Kerppola, 2006) was used

to visualize the 2Fe2S-mediated dimerization of GRX2, because

previous studies have shown that this method is sensitive to

weak and transient protein-protein interactions (Magliery et al.,

2005). We chose to use fragments of the yellow fluorescent

protein Venus, because this protein’s chromophore forms

more efficiently than in other fluorescent protein variants (Nagai

et al., 2002). In addition, we used polypeptide fragments of

Venus, residues 1-173 (designated N173) and 155-243 (desig-

nated C155), which have previously been shown to exhibit

enhanced complementation when fused to proteins that interact

(Hu and Kerppola, 2003).

GRX2 Promotes Venus-Fragment Complementation
in Escherichia coli

To demonstrate that FeSFA reports on the biosynthesis of 2Fe2S

clusters, we characterized the fluorescence of Venus fragments

fused at their C terminus to GRX2 lacking its mitochondrial tar-

geting sequence (Lonn et al., 2008) and a C37A mutant of

GRX2 that lacks the active-site cysteine that directly coordinates

iron and promotes dimerization (Johansson et al., 2007). In addi-

tion, we examined the fluorescence of Venus fragments fused to

the self-associating leucine zipper region of the yeast Gcn4 tran-

scriptional activator as a control for Venus fragments that stably

associate (Pelletier et al., 1998). Constructs were designed such

that protein fusions to the C-terminal fragment of Venus (resi-

dues 155-243; termed C155) contain (His)6 affinity tags whereas

protein fusions to the N-terminal Venus fragment (residues

1-173; termed N173) lack affinity tags (see Figure S1 available
1300 Chemistry & Biology 16, 1299–1308, December 24, 2009 ª2009
online). We found that Escherichia coli coexpressing N173-

GRX2 and C155-GRX2 exhibit 3.5-fold higher whole-cell fluores-

cence than fusion proteins harboring the C37A mutation, albeit

one-third lower than the fluorescence obtained from cells ex-

pressing Venus fragments fused to Gcn4 (Figure 2A). In addition,

affinity-purified C155-GRX2 coelutes from a Ni-NTA column with

higher levels of N173-GRX2 than the protein fusion encoding

a C37A mutation (Figure 2B). Densitometry revealed that the

ratio of the N173 to (His)6-C155 band intensities are 0.75 for

Gcn4, 0.53 for the GRX2, and 0.31 for the C37A. Consistent

with in vivo fluorescence, a lower ratio of N173 to C155 is

observed with purified C155-GRX2 compared with the Gcn4-

tagged Venus fragments.

To determine whether the differences in fluorescence of GRX2

and C37A protein fusions correlate with the level of Fe-S clusters

coordinated by these proteins, we compared the visible

circular dichroism (CD) spectra of the affinity-purified protein

complexes. We found that NTA-purified protein from E. coli co-

expressing C155-C37A and N173-C37A has a visible CD spec-

trum with one ellipticity minimum at 520 nm (Figure 3A). This

minimum is interpreted as arising from the low levels of Venus

chromophore in N173/C155 heterodimers, because the CD

spectra of fluorescent, dimeric N173/C155-Gcn4 (Figure 3B)

exhibits similar negative ellipticity at 520 nm, but with a much

greater magnitude. C155-GRX2 complexes also display an ellip-

ticity minimum at 520 nm that is more pronounced than that in

the spectrum of C155-C37A (Figure 3C), consistent with a greater

fraction of C155-GRX2 being in a complex with N173-GRX2 after

purification. Furthermore, C155-GRX2 displays additional ellip-

ticity maxima (450 nm) and minima (370 nm) that occur at similar

wavelengths and relative intensities as those attributed to the

2Fe2S cluster in dimeric GRX2 (Lillig et al., 2005), implicating

a direct role for 2Fe2S cluster coordination in stabilizing C155-

GRX2 and N173-GRX2 complexes and promoting the matura-

tion of the Venus chromophore.

Proximal 2Fe2S Clusters Decrease Venus Fluorescence
To investigate if 2Fe2S cluster coordination by C155-GRX2/

N173-GRX2 influences the spectral properties of Venus after

maturation, we purified a fusion protein composed of full-length

Venus fused to GRX2 and compared the fluorescence of mono-

meric and dimeric Venus-GRX2. Venus-GRX2 was produced as

a mixture of monomers and dimers upon overexpression in
Elsevier Ltd All rights reserved
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Figure 2. Analysis of Venus Fragment Association upon Overex

pression in Bacteria

(A) Fluorescence spectra of E. coli expressing N173 and (His)6 C155 Venus

fragments fused to Gcn4 leucine zippers, GRX2, and a GRX2 C37A mutant

that cannot coordinate 2Fe2S clusters. The spectra shown are normalized to

the optical density of the cells.

(B) SDS PAGE analysis of (His)6 C155 Venus fragments (10 mg each) that were

Ni NTA purified from E. coli coexpressing pairs of N173 and (His)6 C155 frag

ments fused to Gcn4, GRX2, and C37A. Molecular weight markers: 21.5, 31,

45, 66.2, and 97.4 kDa.

B

C

350 400 450 500 550
Wavelength, nm 

, m
de

g 

A

-2

-1

0

1

2

-2

-1

0

1
2

-5

0

5

, m
de

g 
, m

de
g 

Figure 3. Circular Dichroism Spectra of Purified Venus Fusion

Protein Complexes

Visible circular dichroism spectra of purified (A) C155 C37A, (B) C155 Gcn4,

and (C) C155 GRX2 (1 mg each) were acquired at 25�C using protein

complexes purified from E. coli coexpressing pairs of (His)6 C155 and N173

fusion proteins. All data were corrected for the ellipticity of the buffer. The large

ellipticity minimum in the complex of (His)6 C155 Gcn4/N173 Gcn4 is attrib

uted to the mature Venus fluorophore.
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E. coli (Figure S2A). CD analysis of these different proteins re-

vealed that the monomer lacks an Fe-S cluster (Figure S2B),

whereas the dimer contains bound 2Fe2S cluster (Figure S2C)

like native GRX2 (Lillig et al., 2005). In addition, the 2Fe2S-cluster

bound dimer of Venus-GRX2 exhibits a 30% reduction in fluores-

cence compared to the monomer (Figure S2D), which is smaller

in magnitude than that previously observed with other fluores-

cent proteins fusions (Hoff et al., 2009). To examine whether

this decrease in fluorescence arises from the proximity of the

neighboring Venus chromophores, we also purified a fusion

protein having Venus fused to Gcn4 via a linker containing an

enterokinase cleavage site. Enterokinase treatment for 48 hr

converted Venus-Gcn4 from a dimer to a near equal mixture of

monomer and dimer (Figures S3A and S3B). In addition, the

enterokinase-treated protein exhibited �10% lower fluores-

cence than mock-treated protein (Figure S3C). The magnitude

of this quenching is smaller than that of Venus-GRX2 upon

dimerization, indicating that fluorophore proximity and transition

metal quenching both contribute to the lower fluorescence

of C155-GRX2/N173-GRX2 compared with Venus fragments

fused to Gcn4.
GRX2-Induced Venus Fluorescence Is Irreversible
To establish whether GRX2-mediated Venus fragment comple-

mentation is irreversible, we examined the effect of 2Fe2S

removal on the fluorescence of a purified complex of C155-

GRX2/N173-GRX2. Metallocluster dissociation was induced by

addition of ascorbate, a reductant known to destabilize the met-

allocluster (Lillig et al., 2005), while not affecting the fluorescent

p-hydroxybenzylidene-imidazolidone moiety within intrinsically

fluorescent proteins (Hoff et al., 2009). CD analysis revealed

that addition of ascorbate induces a time-dependent loss of

the 2Fe2S cluster coordinated by C155-GRX2/N173-GRX2

(Figure 4A) and a �10% increase in fluorescence (Figure 4B).

The t1/2 for both spectral transitions occurred 0.86 hr after ascor-

bate treatment (data not shown). These in vitro findings provide
Chemistry & Biology 16, 1299–130
evidence that our Fe-S fluorescence assay is irreversible as

previously observed in fluorescent protein fragment comple-

mentation assays (Magliery et al., 2005), and they show that

FeSFA is suitable for detecting 2Fe2S clusters that are tran-

siently coordinated by GRX2. In addition, these results provide

additional evidence that 2Fe2S binding by GRX2 weakly

quenches the fluorescence of Venus.

GRX2 Enhances Venus-Fragment Complementation
in Mitochondria
We next investigated whether FeSFA can monitor Fe-S cluster

biosynthesis reactions in mammalian cells. Because the

dominant mitochondrial GRX2 isoform (GRX2a) is ubiquitously

expressed (Lonn et al., 2008), we first characterized the fluores-

cence of HEK293 cells transiently cotransfected with constructs

expressing N173 and C155 fusion proteins with mitochondrial

localization tags (Figure S4). In all three cases, confocal images

reveal that Venus fluorescence colocalizes with the mito-

chondria-specific dye MitoTracker Red (Figure 5A), and visual
8, December 24, 2009 ª2009 Elsevier Ltd All rights reserved 1301
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Figure 4. Reversibility of GRX2 Mediated Venus Fragment Comple

mentation

(A) Incubation of purified, recombinant N173 GRX2/C155 GRX2 with 5 mM

ascorbate leads to loss of the ellipticity minima (370 nm) and maxima

(450 nm) that are observed in the spectrum of 2Fe2S bound dimers of GRX2

(Lillig et al., 2005).

(B) Incubation of purified N173 GRX2/C155 GRX2 with 5 mM ascorbate leads

to an increase in Venus fluorescence. All samples were baseline corrected for

buffer ellipticity and fluorescence.

Chemistry & Biology

Fluorescence Detection of 2Fe2S Binding by GRX2
inspection indicates that cells expressing Venus fragments fused

to Gcn4 and GRX2 display enhanced fluorescence relative to

C37A fusions. Flow cytometry analysis reveals that cells coex-

pressing N173-GRX2 and C155-GRX2 also exhibit 12-fold higher

average Venus fluorescence than cells expressing the protein

fusions harboring the C37A mutation in GRX2 (Figure 5B), greater

than the difference observed in E. coli. The higher fluorescence

with GRX2 fusion proteins is interpreted as arising from 2Fe2S-

induced dimerization of Venus fragments, because the GRX2

constructs are not transcribed to a greater extent than those

that contain the C37A mutation (Figure 6A), the GRX2 and

C37A fusions proteins accumulate to a similar extent (Figure 6B),

and cells transfected with each fusion pair display similar viability

to mock-transfected cells (data not shown). As observed in the

bacterial studies, cells expressing N173-Gcn4 and C155-Gcn4

exhibit higher fluorescence than cells producing the GRX2-fused

fragments.
GRX2 Enhances Venus-Fragment Complementation
in the Cytosol
Cystosolic glutaredoxin 2 has recently been implicated as having

a role in iron-sulfur cluster coordination (Lonn et al., 2008), but

the ability of this protein to coordinate iron-sulfur clusters

in vivo has not been established. To directly test this using

FeSFA, we built constructs for coexpressing N173 and C155

fusion proteins lacking mitochondrial localization signals

(Figure S4), and we examined their fluorescence in HEK293 cells.

All three N173/C155 Venus fragment pairs exhibit diffuse fluores-

cence characteristic of cytosolic proteins (Figure 5A). In addition,

flow cytometry analysis of cells expressing cytosolic Venus

fragments display similar differences in average fluorescence

as observed with bacterial and mitochondrial constructs (Fig-

ure 5B): Gcn4 > GRX2 > C37A. Cells coexpressing N173-

GRX2 and C155-GRX2 exhibit 8.2-fold higher average Venus

fluorescence than cells expressing the protein fusions harboring

the C37A mutation in GRX2. As in the mitochondria, the

observed fluorescence difference between cytosolic GRX2 and
1302 Chemistry & Biology 16, 1299–1308, December 24, 2009 ª2009
C37A constructs does not arise from greater accumulation of

GRX2 transcripts or fusion proteins (Figures 6A and 6B).

Fe-S Cluster Assembly Is Required for Maximal
Venus Fluorescence
To investigate whether the fluorescence signal of our cytosolic-

localized FeSFA arises from 2Fe2S-mediated dimerization of

GRX2, we used RNA interference to deplete two Fe-S cluster

assembly proteins and compared the effects of depletion on

the fluorescence of Venus fragments fused to GRX2 and C37A.

The cysteine desulfurase NFS1 and iron-sulfur cluster template

ISCU were targeted using short interfering RNAs (siRNAs)

because their depletion has been shown to cause cytosolic

defects in Fe-S cluster biogenesis (Fosset et al., 2006; Song

and Lee, 2008; Tong and Rouault, 2006). Transfection of

HEK293 cells with siRNAs corresponding to those previously re-

ported lead to a > 50% reduction in NFS1 and ISCU levels

compared to cells treated with a mock siRNA (Figure 7A). In addi-

tion, NFS1 and ISCU depleted cells show a significant reduction

(>50%) in the fluorescence obtained from Venus fragments

fused to GRX2 compared with mock-treated cells (Figure 7B)

and a decrease in the activity of xanthine oxidase, an enzyme

that requires an Fe-S cluster to function (Figure S5). In contrast,

the levels of transcripts encoding Venus fragment fusion proteins

were not similarly affected (Figure 7C), demonstrating that the

changes in fluorescence are not due to differences in gene

expression. These results indicate that dimerization of GRX2 in

the cytosol requires iron-sulfur assembly proteins, and that the

Venus fragment assembly trap has utility for detecting cellular

defects in Fe-S cluster biosynthesis.

DISCUSSION

Monothiol and dithiol glutaredoxins have both been implicated

as essential for maintaining Fe-S cluster homeostasis in eukary-

otes. In yeast, depletion of the monothiol glutaredoxin Grx5p

leads to a decrease in Fe-S cluster protein activities and the

accumulation of Fe-S clusters coordinated by the mitochondrial

template protein Isu1p (Muhlenhoff et al., 2003). This suggests

that monothiol glutaredoxins may play a role in regulating Fe-S

cluster biogenesis after initial assembly on template proteins.

In mammals, the activities of Fe-S cluster proteins are also

decreased by a mutation in the monothiol GLRX5 (Camaschella

et al., 2007) as well as depletion of the dithiol GRX2 (Lee et al.,

2009). In vitro studies have provided evidence that these pheno-

types may arise because glutaredoxins require a direct interac-

tion with Fe-S clusters to maintain homeostasis. Monothiol and

dithiol glutaredoxins have both been shown to form 2Fe2S-

bridged dimers upon overexpression in bacteria (Lillig et al.,

2008), and these findings have implicated possible roles for

metalloclusters in regulating the oxidoreductase activities of

glutaredoxins (Lillig et al., 2005) and for glutaredoxins in deliv-

ering Fe-S clusters to apo-acceptor scaffold proteins (Bandyo-

padhyay et al., 2008). To date, however, no direct evidence for

glutaredoxin dimers has been reported within living eukaryotes,

although GRX2 has been shown to coimmunoprecipitate with
55Fe from tissue culture cells (Lillig et al., 2005).

Herein we provide the first direct evidence that a dithiol gluta-

redoxin self-associates through a metallocluster within human
Elsevier Ltd All rights reserved
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Figure 5. Venus Fluorescence in HEK293 Cells

(A) Confocal images of HEK293 cells coexpressing Venus fragments fused to Gcn4, GRX2, and C37A were obtained using a 63x, 1.4NA objective lens. Mitochon

drial constructs (left) colocalize with MitoTracker Red (MT) while cytosolic constructs (right) display diffuse staining. Bright field images are shown to demonstrate

cell health and visualize the location of all cells, and Hoechst (H) nuclear stain is shown for reference with cytosolic constructs. To obtain images that show the

Venus localization of our different constructs, the percentage transmission of the excitation laser light was adjusted to the values shown on the Venus images.

(B) The fluorescence of cells transiently transfected with vectors that express mitochondrial (left) and cytosolic (right) Venus fragment pairs fused to Gcn4, GRX2,

and GRX2 C37A was determined using flow cytometry. Cells were cotransfected with Venus fragment constructs and a plasmid that constitutively expresses the

cyan fluorescent protein (Cy PET). Venus fluorescence is only shown for those cells that exhibit detectable Cy PET fluorescence The mitochondrial constructs

yielded mean arbitrary fluorescence values of 6.0 ± 0.2 (GRX2 C37A), 71 ± 1.9 (GRX2), and 554.6 ± 9.2 (Gcn4). The cytosolic constructs yielded mean fluores

cence values of 8.2 ± 1.6 (GRX2 C37A), 67.5 ± 7.5 (GRX2), and 522.0 ± 19.5 (Gcn4). Fluorescence values were determined from three independent experiments

and are reported ± 1 standard deviation.
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cells. Cells coexpressing Venus fragments fused to GRX2 in

either the mitochondria or the cytosol were found to exhibit

higher fluorescence than those expressing proteins fusions

with the iron ligand (Cys37) mutated to alanine (Johansson

et al., 2007). In the cytosol, the increased fluorescence of

GRX2 fusions compared with constructs having the C37A muta-
Chemistry & Biology 16, 1299–130
tion is attributed to 2Fe2S binding, because the ratio of GRX2

to C37A fluorescence is less pronounced upon depletion of

proteins that are required for the synthesis of other cytosolic

iron-sulfur clusters (Fosset et al., 2006; Tong and Rouault,

2006). In the mitochondria, the higher fluorescence with GRX2

protein fusions compared with the C37A mutants is also
8, December 24, 2009 ª2009 Elsevier Ltd All rights reserved 1303
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Figure 7. ISCU and NFS1 Are Needed for Maximal Venus Fragment

Complementation in the Cytosol

(A) Western immunoblotting to ISCU and NFS1 in cells transfected with a siRNA

duplex targeted to ISCU, NFS1, and a mock siRNA that does not target any

human genes. Immunodetection of actin is shown as a load control.

(B) Relative fluorescence of cytosolic GRX2 and C37A Venus fragment pairs in

mock, NFS1 depleted, and ISCU depleted HEK293 cells was determined using

flow cytometry. Fluorescence is reported relative to that observed for the C37A

constructs.

(C) Quantitative PCR analysis of Venus N173 (white) and C155 (black) tran

scripts in HEK293 cells that have been transfected with a siRNA duplex

targeted to ISCU, NFS1, and a mock siRNA. Transcript levels are reported

relative to C37A levels. Error bars represent one standard deviation.
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Figure 6. Protein and Transcript Levels in

Transiently Transfected Cells

(A) Quantitative PCR analysis of Venus N173

(white) and C155 (black) transcripts in HEK293

cells. Transcript levels are reported relative to

C37A levels in each cellular compartment. Error

bars represent one standard deviation.

(B) Western immunoblots showing the relative

levels of GRX2 and C37A protein fusions in

HEK293 cells cotransfected with vectors that ex

press N173 and C155 fragments fused to GRX2

and C37A.
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attributed to 2Fe2S cluster binding, because GRX2 coimmuno-

precipitates with 55Fe in cells that are only predicted to express

the mitochondrial isoform of this protein (Lillig et al., 2005). Taken

together, these finding suggest that the ratio of GRX2 to C37A

fluorescence can be used in cells depleted for known Fe-S

cluster assembly proteins (Lill, 2009) to identify the proteins

required for the biosynthesis of 2Fe2S clusters on GRX2. In addi-

tion, this approach will be useful for determining if the level of

Fe-S clusters bound by GRX2 is altered in cell models for

mitochondrial diseases, such as Friedreich’s ataxia (Calmels

et al., 2009).

A comparison of our results with expression analysis of the

three human GRX2 isoforms (GRX2a, GRX2b, and GRX2c)

suggests that Fe-S clusters regulate the activity of two of these

isoforms under physiological conditions. The glutaredoxin that

we used to drive Venus-fragment complementation is identical

in sequence to the mitochondrial isoform (GRX2a) after removal

of its mitochondrial targeting sequence (Lundberg et al., 2001).

The ubiquitous expression pattern of GRX2a suggests that

Fe-S clusters may play a housekeeping role in regulating the

function of this isoform in all cell types (Lonn et al., 2008). The

glutaredoxin that we fused to Venus fragments is also identical

to GRX2c, an isoform that localized to the cytosol and nucleus

(Lonn et al., 2008). Unlike GRX2a, however, GRX2c transcripts

are restricted to the testis in healthy tissues and cancer cells

(Hudemann et al., 2009), implicating a more limited role for

Fe-S cluster regulation of this cytosolic isoform. Future studies

will be required to test whether GRX2a and GRX2c coordinate

Fe-S clusters in all of the tissues where they are expressed

and to establish the cellular role(s) for metallocluster binding.

Our measurements of Venus-fragment complementation

within E. coli also provides evidence that fluorescence imaging

can report on 2Fe2S binding to glutaredoxins within prokaryotes.

Bacteria expressing GRX2 and Venus fragment fusions exhibit

greater fluorescence than those with a C37A mutation that

prevents 2Fe2S binding (Johansson et al., 2007), albeit less

than the Gcn4 fused fragments that associate without the assis-

tance of an Fe-S cluster (O’Shea et al., 1991). In addition, His-

tagged C155-GRX2 copurifies with more N173-GRX2 than

protein fusions containing the C37A mutation, and only the

GRX2 complex contains a 2Fe2S cluster. These findings indicate

that FeSFA can be used in E. coli to screen libraries of GRX2

mutants created by error-prone polymerase chain reaction

(PCR) for variants that retain the ability to dimerize through

a 2Fe2S cluster (Bloom et al., 2005). In addition, our findings

suggest that Venus-fragment complementation will be useful

for testing whether monothiol glutaredoxins coordinate 2Fe2S
1304 Chemistry & Biology 16, 1299–1308, December 24, 2009 ª2009
clusters in vivo as predicted from in vitro reconstitution studies

(Iwema et al., 2009). Furthermore, the Venus fragment assembly

trap is predicted to be useful for discovering proteins that form

transient Fe-S cluster bridged heterodimers with glutaredoxins

(Li et al., 2009). In vitro studies have implicated a role for Fe-S

scaffold proteins in transferring metallocluster to other proteins

(Bonomi et al., 2008), but intermediates that form during cluster

transfer have not yet been observed.
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Studies examining the stability of the fluorescent N173-GRX2/

C155-GRX2 complex demonstrate that the signal arising from

GRX2 dimerization is irreversible, as observed in previous bimo-

lecular fluorescence complementation studies (Stefan et al.,

2007). This attribute will preclude the use of FeSFA to continu-

ously monitor dynamic changes in GRX2 dimerization, although

regulated protein expression can be used to control when the

fluorescence signal begins to accumulate. Such a strategy has

been effective for analyzing inhibitors of protein-protein inter-

actions in other bimolecular fluorescence complementation

studies (Morell et al., 2008). The detection of dynamic changes

in GRX2 dimerization (and 2Fe2S binding) may be achievable

using luciferase-fragment complementation (Stefan et al., 2007)

and fluorescence resonance energy transfer (Greeson et al.,

2006). However, these methods could experience greater issues

with signal to noise compared with FeSFA, especially under

cellular conditions where only a fraction of GRX2 coordinates

a transient 2Fe2S cluster. Ongoing studies are examining the

tradeoff between reporter sensitivity and time-resolved informa-

tion obtained from different dimerization reporters.

SIGNIFICANCE

In nature, specialized proteins have evolved to synthesize

and relay iron-sulfur clusters to proteins that require these

metalloclusters to function (Lill, 2009). Biochemical and

genetic studies in bacteria (Raulfs et al., 2008) and fungi

(Lill and Muhlenhoff, 2008) have provided insight into the

mechanism of these reactions in living cells. However, our

understanding of these processes in mammals is far more

limited because of inherent limitations in the biochemical

(Pierik et al., 2009) and biophysical techniques (Djaman

et al., 2004; Yang et al., 2009) available to study protein-

bound iron-sulfur clusters in cell models. Here we show

that the relative levels of 2Fe2S clusters coordinated by

human GRX2 can be imaged in mammalian tissue culture

cells using bimolecular fluorescence complementation

(Kerppola, 2006). Because of the relative ease of this

approach and the array of accessible instrumentation with

which it can be employed (e.g., fluorimeters, flow cytome-

ters, and fluorescent microscopes), we propose that it will

aid in discovering additional glutaredoxins that coordinate

Fe-S cluster in living cells (Lillig et al., 2008) and determining

the extent to which GRX2 binding to Fe-S clusters is altered

in cell models of human diseases (Calmels et al., 2009). With

appropriate high-throughput screening, this approach

should aid in identifying proteins whose depletion (and over-

expression) affect iron-sulfur cluster homeostasis in the

different subcellular compartments where glutaredoxins

are found (Lonn et al., 2008).

EXPERIMENTAL PROCEDURES

Plasmid Construction

A gene fusion encoding full length Venus (residues 1 243) (Nagai et al., 2002)

fused to the N terminus of the processed mitochondrial isoform of GRX2 (resi

dues 42 164) (Gladyshev et al., 2001) through a 15 amino acid (GGGGS)3 linker

was generated by PCR assembly (Horton et al., 1989) and cloned into pET28a

(EMD Biosciences) using bamHI and notI sites to produce a vector that

expresses a fusion protein with a N terminal (His)6 tag. In addition, a gene
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fusion encoding the dimerizing region of the Gcn4 leucine zipper (residues

245 281) (O’Shea et al., 1991) connected to the C terminus of Venus (Nagai

et al., 2002) through a DDDDK (GGGGS)3 linker was cloned into pET28a using

bamHI and notI sites. This vector expresses a Venus protein fusion with a

N terminal (His)6 tag and a linker containing an enterokinase cleavage site.

Bacterial vectors for expressing N173 protein fusions were generated by

cloning genes encoding Venus residues 1 173 fused to Gcn4, GRX2, and

C37A through a 15 amino acid (GGGGS)3 linker into pET21d (EMD Biosci

ences) using bamHI and notI sites. Plasmids for expressing C155 protein

fusions in E. coli were constructed by cloning genes encoding Venus residues

155 243 fused to Gcn4, GRX2, and C37A through a (GGGGS)3 linker into

pET28a using bamHI and notI sites. All pET28 derived vectors produce

proteins having a (His)6 tag at their N terminus, whereas pET21 derived vectors

express proteins without an affinity tag.

Mammalian expression vectors were constructed through PCR assembly as

for bacterial constructs, but with the inclusion of a single copy of either the

FLAG (Venus N173 constructs) or Myc epitope (Venus C155 constructs) at

the C terminus of the fusion protein. All constructs were cloned into

pcDNA5/frt (Invitrogen) using bamHI and notI restriction sites. Mitochondrial

localization sequences were added in frame at the N termini of cytosolic

constructs by ligating a synthetic oligonucleotide encoding the cytochrome

c oxidase subunit 8 mitochondrial localization sequence (Huttemann et al.,

2003) into unique ecoRI and bamHI sites. All constructs were verified by

DNA sequencing.

Bacterial Expression and Protein Purification

E. coli BL 21 (DE3) RIL cells harboring vectors for coexpressing N173 and

C155 Venus fusion proteins were grown in LB containing 50 mg/ml ampicillin

and 10 mg/ml kanamycin at 30�C, induced with 1 mM IPTG at A600 z1, and

grown for exactly 60 min at 30�C. Harvested cells were resuspended in

PSIG (50 mM phosphate [pH 7.0], 300 mM NaCl, 10 mM imidazole, 2 mM

GSH) containing 1 mM MgCl2, 300 mg/ml lysozyme, and 2 U/ml DNase I. Re

suspended cells were frozen at �80�C, thawed, and centrifuged at 15k 3 g

for 1 hr. Cleared lysate was applied to a 2 ml nickel talon affinity (NTA) column

(QIAGEN) equilibrated with PSIG, washed with 50 column volumes of PSIG,

and protein was eluted using exactly 3 ml PSIG containing 250 mM imidazole.

Samples eluted from the column were immediately used for spectral measure

ments at 23�C. To obtain a buffer control for baseline corrections of spectra,

a column equilibrated with PSIG was washed with exactly 3 ml PSIG contain

ing 250 mM imidazole. To facilitate rapid analysis of protein ellipticity and fluo

rescence before significant proteolytic degradation could occur, the concen

trations of the purified proteins were assessed using the Bradford method

with bovine serum albumin (BSA) as a standard. This approach was chosen

over spectrophotometric quantitation because the buffer used to elute proteins

from NTA resin contains 250 mM imidazole. Imidazole absorbs at the same

wavelength as tyrosine and tryptophan, preventing any absorption measure

ments without a time consuming and potentially damaging dialysis step.

Protein purity was analyzed by electrophoresis on a NuPAGE 10% Bis Tris

SDS PAGE gel (Invitrogen) with MOPS SDS running buffer.

Spectroscopy

A Varian Cary 50 UV/Vis spectrophotometer was used for absorbance

measurements. Circular dichroism spectra were recorded at 25�C using a

JASCO 815 spectropolarimeter with a 1 cm path length cuvette using a 4 nm

bandwidth. All CD spectra shown are corrected for the ellipticity of the buffer.

Whole cell fluorescence spectra of bacteria expressing each N173 and C155

fragment pair were measured 1 hr after induction using a Tecan Safire plate

reader (lexcitation = 505 nm). Fluorescence spectra of purified proteins were

recorded at 25�C using an SLM AMINCO Series 2 spectropolarimeter using

a path length of 1 cm, a 4 nm bandwidth, and a lexcitation = 510 nm.

Effect of Enterokinase on Venus-Gcn4

A sample of Venus Gcn4 (20 mM) in PSG buffer was divided into two samples,

4 U enterokinase (Novagen) was added to one sample, and an equivalent

volume of buffer was added to the other sample. After incubation at room

temperature for 48 hr, the fraction of protein cleaved in each sample was

analyzed by SDS PAGE and gel filtration chromatography on a Superdex 75
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column. In addition, the fluorescence of these samples was compared using

a lexcitation = 510 nm.

Venus Fragment Complex Stability Measurements

Because aggregation prone monomeric C155 GRX2 copurifies with the 2Fe2S

complex of N173 GRX2/C155 GRX2 during NTA chromatography, NTA puri

fied C155 GRX2 was chromatographed on a Superdex 75 gel filtration column

that had been equilibrated in PSIG buffer. Fractions migrating at the apparent

molecular weight of the protein complex, which were fluorescent and found by

SDS PAGE to contain equimolar amounts of N173 GRX2 and C155 GRX2,

were pooled and immediately transferred to glutathione free PSI buffer using

a 5 ml HiTrap desalting column (GE Healthcare). Ascorbate was added to

the eluted protein to a final concentration of 5 mM, and protein ellipticity and

fluorescence was monitored. As previously observed, the 2Fe2S cluster

bound to GRX2 was destabilized by ascorbate, although the kinetics of Fe S

cluster loss from the N173 GRX2/C155 GRX2 complex was faster than that

reported for purified, dimeric GRX2 (Lillig et al., 2005). In addition, the fluores

cence of the N173 GRX2/C155 GRX2 complex was found to increase �10%

with a rate that mirrored the loss of the 2Fe2S dependent ellipticity. Because

the buffer conditions required for metallocluster destabilization involved condi

tions that could lead to intermolecular disulfides between active site cysteines

in fluorescent complexes of N173 GRX2 and C155 GRX2, we examined the

effect of adding excess dithiothreitol (10 mM) to the protein complex immedi

ately after 2Fe2S dissociation. A 15 hr incubation with dithiothreitol did not lead

to any reduction in the Venus fluorescence (data not shown).

Confocal Microscopy

HEK293 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% bovine calf serum at 37�C in a 90% humidified atmo

sphere containing 5% CO2. Cells were seeded in 6 well plates and allowed to

reach 80% confluency before transfection with pairs of plasmids that consti

tutively express the different Venus fragment pairs (i.e., C155 and N173 fused

to Gcn4, GRX2, and C37A, respectively). Transfections were performed using

2 mg each plasmid and 6 ml Fugene6 transfection reagent (Roche). After an

8 hr exposure to transfection reagents, cells were replated to glass bottom

dishes (MatTek Corp) for imaging at 24 hr after transfection. Cells were

stained with either 50 nM MitoTracker Red CMXRos (Invitrogen) or 5 mg/ml

Hoechst 33342 (Invitrogen) in phosphate buffered saline (PBS) at 23�C for

20 min. After washing with PBS, live cells were imaged using an LSM 510

confocal fluorescence microscope (Carl Zeiss, Inc). Venus and Mitotracker

Red were excited with Argon (514 nm) and HeNe (543 nm) lasers, respectively,

and using dichroics and filters (bandpass and longpass) the Venus and Mito

Tracker fluorescence was isolated in separate channels spanning 545 590 nm

and greater than 560 nm, respectively. To obtain clear images of Venus fluo

rescence, the percentage transmission of excitation laser light was varied

from 1% to 15%. Hoechst was excited using a Ti:Sapphire 2 photon laser

(Coherent, Inc.) tuned to 750 nm, and emission of this nuclear dye was

captured by a channel spanning 435 485 nm. The pinhole for the MitoTracker

channel was set to 4 Airy units, the pinhole for the Venus channel was set to

2 or 4 Airy units to image the mitochondrial or cytosolic localized constructs,

and the pinhole was completely open when using two photon excitation with

the Hoechst dye.

Flow Cytometry

HEK293 cells analyzed by flow cytometry were cotransfected with pairs of

plasmids (225 ng each) that constitutively express the different Venus frag

ment pairs (i.e., C155 and N173 fused to Gcn4, GRX2, and C37A, respectively)

and a plasmid (pCEP4CyPet MAMM, Addgene plasmid #14033) that constitu

tively expresses the cyan fluorescent protein Cy PET (50 ng). The cells were

harvested by trypsinization, pooled, and analyzed on a Beckman Coulter

Quanta flow cytometer 24 hr after transfection. Cy PET fluorescence was ob

tained by using a mercury arc lamp with a 425/40 nm filter for excitation and

a 480/40 nm filter for detection, whereas Venus fluorescence was obtained

using a 488 nm laser for excitation and a 525/40 nm filter for detection. Viable

cells were gated based on their side scatter, and the percentage of Cy PET

fluorescent cells was calculated using only those viable cells that exhibited

fluorescence greater than the gated untransfected population of HEK293 cells.

Venus fluorescence is only shown for the subpopulation of each transfection
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that were found to exhibit CyPET fluorescence. All data analysis was per

formed using FlowJo 7.4.2 software.

Cell Viability Measurements

To investigate whether Venus fragments fused to GRX2 and C37A are toxic to

the HEK293 cells used for analysis, we compared the viability of cells trans

fected with our reporters to mock transfected cells by flow cytometry using

7 Amino Actinomycin D (7 AAD; Invitrogen). Cells were harvested by trypsini

zation 24 hr after transfection, and 1 mg 7 AAD was added to each sample.

Cells were then analyzed for 7 AAD incorporation, a measure of cell death,

by flow cytometry with 488 nm laser excitation and 610 nm long pass emission

filter. Under our assay conditions, all transfected cell populations exhibited

similar viability of �80% (data not shown).

RNA Interference-Mediated Gene Silencing

HEK293 cells maintained in DMEM supplemented with 10% bovine calf serum

at 37�C in a 90% humidified atmosphere containing 5% CO2 in 24 well plates

and allowed to reach 50% confluency before transfection with 20 nM duplex

RNA molecules directed toward NFS1 (CAAGUAGCAUCUCUGAUUG)

(Song and Lee, 2008), ISCU (UCAAGGCCGCCCUGGCUGA) (Tong and

Rouault, 2006), or mock Accel Non targeting siRNA #3 (Dharmacon, Catalog #

D 001910 03 05) using lipofectamine RNAiMAX (Invitrogen) as recommended

by the manufacturer. After 3 days growth, cells were split 1 to 4 and reverse

transfected with 20 nM RNA duplexes. After 1 day of growth, cells were trans

fected with Grx2 and GRX2 C37A sensor pairs (225 ng each) and pCY Pet

MAMM (100 ng) using Fugene6. Cells were collected for flow cytometry and

western blotting 18 hr after transfection.

Quantitative PCR

Total cellular RNA was purified from transiently transfected HEK293 cells using

GenElute mammalian total RNA purification kit (Sigma) according to the

manufacturer’s instructions, followed by DNase treatment (Invitrogen). cDNA

was synthesized using a gene specific primer for the pcDNA5/frt vector and

Superscript III reverse transcriptase (Invitrogen) according to the manufac

turer’s instructions. Quantitative real time PCR analysis was performed

using primers specific for the transcripts encoding N173 and C155 fragments

(Table S1). Reactions were 25 ml and contained 1 ml template cDNA, 10 pmol

each primer, and 1X iQ SYBR green supermix (Bio Rad). Reactions were

carried out using an iCycler iQ system (Bio Rad) for 30 cycles (95�C for 15 s,

72�C for 30 s). The purity of the PCR products was determined by melt curve

analysis. Data analysis was completed using the iCycler IQ system software

v.3.1.7050 (Bio Rad). The relative expression of the N173 and C155 Venus

fragments was calculated using the DCt (change in cycling threshold)

method (Livak and Schmittgen, 2001). Expression levels were normalized

to the levels of HPRT (hypoxanthine guanine phosphoribosyltransferase).

Fold expression data are reported as the mean expression for each sample

divided by the mean expression of the corresponding C37A construct ± 1

standard deviation.

Western Immunoblots

Whole cell extracts were prepared from harvested cells using M PER

mammalian protein extraction reagent (Pierce) supplemented with 0.1 mM

PMSF, and total protein concentrations were determined using Bradford

Coomassie reagent (Bio Rad) with BSA as a standard. Equal amounts of

protein (50 mg) were resolved on Nu PAGE 4% 12% SDS PAGE gels (Invitro

gen) using MES SDS buffer and transferred to Protran nitrocellulose

membranes (Whatman) using the Trans Blot SD semi dry transfer cell

(Bio Rad). After blocking with 5% BSA in TBST (50 nM Tris [pH 8.0], 150 nM

NaCl, 0.1% Tween 20) overnight, the membranes were incubated with the

specified antibodies at 20�C. After incubation, the membranes were washed

with TBST and then incubated with the corresponding secondary antibody

conjugated with HRP. Signals were detected using the ECL plus western blot

ting substrate (GE Healthcare) according to the manufacturer’s protocol.

Western immunoblots were performed using mouse monoclonal antibodies

to human NFS1 (1:500 dilution, Santa Cruz Biotech) and detected with

a 1:10,000 dilution of goat anti mouse HRP secondary (Santa Cruz Biochem)

and to the Flag (1:2,000 dilution, Sigma Aldrich) and Myc epitopes (1:10,000

dilution, Sigma Aldrich) and detected with a 1:10,000 or 1:40,000 dilution of
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goat anti mouse HRP secondary (Santa Cruz Biochem), respectively. ISCU

was detected with affinity purified rabbit polyclonal antibody toward E. coli

IscU (1:100 dilution, kind gift from Larry E. Vickery, University of California, Ir

vine) (Hoff et al., 2000) and detected with a 1:40,000 mouse anti rabbit HRP

conjugate (Sigma Aldrich). Actin was detected with a goat polyclonal antibody

toward a actin (1:1,000 dilution, Santa Cruz Biotech) detected with a 1:10,000

dilution of donkey anti goat HRP secondary (Santa Cruz Biochem).
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